An essential virulence protein of Brucella abortus, VirB4, requires an intact nucleoside-triphosphate-binding domain.
نویسندگان
چکیده
Brucella abortus is a facultative intracellular bacterium capable of surviving inside macrophages. The VirB complex, which is highly similar to conjugative DNA transfer apparatuses, is required for intracellular replication. A conserved NTP-binding domain in VirB4 suggests that one or both proteins couple energy by NTP hydrolysis to transport of putative effector molecule(s). Here it is shown that a mutant strain of B. abortus that contains an in-frame deletion in virB4 is unable to replicate in macrophages and survives in mice. Intracellular replication and virulence in mice are fully restored by expressing virB4 in trans, indicating that VirB4 is essential for intracellular replication and virulence in mice. An alteration within the NTP-binding region of VirB4 by site-directed mutagenesis abolished complementation of a virB4 mutant, demonstrating that an intact NTP-binding domain is critical for VirB4 function. Intracellular replication was inhibited in wild-type B. abortus after introducing a plasmid expressing a mutant VirB4 altered in the NTP-binding region. The dominant negative phenotype suggests that VirB4 either functions as a multimer or interacts with some other component(s) necessary for intracellular replication. Wild-type B. abortus-containing phagosomes lack the glycoprotein LAMP-1, which is an indicator of the normal endocytic pathway. Mutant strains were found in phagosomes that co-localized with LAMP-1, indicating that VirB4 containing the intact NTP-binding region is essential for evasion of fusion with lysosomes.
منابع مشابه
The Agrobacterium tumefaciens virB4 gene product is an essential virulence protein requiring an intact nucleoside triphosphate-binding domain.
Products of the approximately 9.5-kb virB operon are proposed to direct the export of T-DNA/protein complexes across the Agrobacterium tumefaciens envelope en route to plant cells. The presence of conserved nucleoside triphosphate (NTP)-binding domains in VirB4 and VirB11 suggests that one or both proteins couple energy, via NTP hydrolysis, to T-complex transport. To assess the importance of Vi...
متن کاملCharacterization and protective property of Brucella abortus cydC and looP mutants.
Brucella abortus readily multiplies in professional or nonprofessional phagocytes in vitro and is highly virulent in mice. Isogenic mutants of B. abortus biovar 1 strain IVKB9007 lacking the ATP/GDP-binding protein motif A (P-loop) (named looP; designated here the IVKB9007 looP::Tn5 mutant) and the ATP-binding/permease protein (cydC; designated here the IVKB9007 cydC::Tn5 mutant) were identifie...
متن کاملThe Glyceraldehyde-3-Phosphate Dehydrogenase and the Small GTPase Rab 2 Are Crucial for Brucella Replication
The intracellular pathogen Brucella abortus survives and replicates inside host cells within an endoplasmic reticulum (ER)-derived replicative organelle named the "Brucella-containing vacuole" (BCV). Here, we developed a subcellular fractionation method to isolate BCVs and characterize for the first time the protein composition of its replicative niche. After identification of BCV membrane prot...
متن کاملBrucella abortus nicotinamidase (PncA) contributes to its intracellular replication and infectivity in mice.
Brucella spp. are facultative intracellular pathogens that have the ability to survive and multiply in professional and non-professional phagocytes, and cause abortion in domestic animals and undulant fever in humans. The mechanism and factors of virulence are not fully understood. Nicotinamidase/pyrazinamidase mutant (pncA mutant) of Brucella abortus failed to replicate in HeLa cells, and show...
متن کاملImmunogencity of HSA-L7/L12 (Brucella abortus Ribosomal Protein) in an Animal Model
Background: The immunogenic Brucella abortus ribosomal protein L7/L12 is a promising candidate antigen for the development of subunit vaccines against brucellosis. Objective: This study was aimed to evaluate the protection of recombinant Human Serum Albumin (HAS)-L7/L12 fusion protein in Balb/c mice. Methods: The amplified L7/L12 gene was cloned in pYHSA5 vector, pYHSA5-L7/L12 construct was tra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Microbiology
دوره 148 Pt 5 شماره
صفحات -
تاریخ انتشار 2002